
JAK NA POWER BI CHEATSHEET

DATA MODELING

What is DATAMODELING? Dimensional schemas Data storage modes DAX or M Dataset
“Data modeling aims to capture and

describe the part of reality that we want
to keep information about.“

Data models

Types of relationships

MeasuresDimensions

Partitions

Dataflows

Composite models

Calculated Columns

› Data models – define how the logical structure of a database is
modeled. Data models define how data is connected and
processed, and stored inside the system.

› Entity-Relationship model – Model is based on the notion
of real-world entities and relationships among them. While
formulating real-world scenarios into the database model.
This model is based on Entities (and their attributes) and
Relationships (among entities).
› Entities - have properties called attributes, where every set

of values called domain defines an attribute.
› Relationships – are logical association among entities. The

cardinality mapping within a bind establishes the number of
associations between two entities.

› Relation / Normalized model – This model is based on first-
order predicate logic and defines a table as an n-ary relation.
Data stored in tables are called relations and can be
normalized. Each column in a relation contains values from
the same domain!

› Dimensional model – This is a technique that uses Dimensions
and Facts to store data efficiently. Dimensional Models have
a specific structure and organize the data to generate
reports that improve performance. Five main components are
used in any of these models:
› Attributes/Measures – are the elements of the DT.
› Fact Tables – Are utilized to store measures or transactions

in the business. They are related to DT with the foreign key.
› Dimensions Tables (DT) – contain descriptive data that is

linked to the Fact Table. DT are usually optimized tables and
hence have large columns and fewer rows.

› Relationships - Is a link between two tables, based on a
primary key on one side, to the foreign key on the other side
of the relationship. A regular dimension relationship
represents the relationship between dimension tables and a
fact table. Relationships have properties like cardinality,
condition, direction and type.

› Conformed – has the same meaning to all the Facts it relates to.
› Outrigger – represents a connection between different

Dimension Tables.
› Shrunken – is a perfect subset of a more general data entity.
› Role-Playing – has multiple valid relationships between itself

and various other tables. (Date table)
› Junk – is used to combine two or more related low cardinality

Facts into one Dimension.
› Degenerate – are standard Dimensions that are built from the

attribute columns of Fact Tables. Sometimes data are stored
in Fact Tables to avoid duplication.

› Swappable – has multiple similar versions of itself, which can
get swapped at query time.

› Step – explains where a particular step fits into the process.
› Slowly changing – contains relatively static data which can

change slowly but unpredictably.
› Rapidly changing - one or more of its attributes in the table

changes very fast and in many rows
› Static – are not extracted from the real data source.

› Star – modeling approach adopted in data warehouses and
other analytical systems. Inteded for large volumes of data.
› Star schemas can be identified by having one or multiple fact
tables and connected dimensions. Star schemas typically
work with column based compression.

› In a star schema, the dimensions support filtering and
grouping of data. When viewing the data, the data from
related facts will be aggregated and viewed on the level
of the dimension.

› Example: Sales table, containing all sales transactions in the
middle. This fact table is surounded by various dimensions
such as a Customer, Product and Date dimensions
adding context to the transactions.

› Star schemas are key to optimized, well performing and easy
usable data models.

› Snowflake – snowflake models follow the same patterns as star
schemas. The both work based on relationships between
tables, typically from fact to dimensional tables. However, in
snowflake schemas, there are also relations between
dimensions and dimensions.
› Example: Product dimension, which has an active relationship

to the product category dimension.
› In case of related dimensions, you could consider to join them

together in one table to create a star schema out of it. Take
data duplication for multiple rows and column compression
into consideration when exploring the optoins to join.

Data modeling rules to live by
- Simple DAX is a sign of a good data model.
- DAX complexity down, performance goes up.

Cardinality
› 1:1 – One record in the left table, relates to exactly one

record in the right table. Typically, these tables can also be
joined in a single table. Example: a customer has one
address.

› 1:N – One record on the left side of the relationship, relates
to many records on the right side of the relationship.
Example: A customer has multiple sales transactions.

› M:N – many records on one side of the relationship, relate to
many records on the other side of the relationship. Example:
A student attends many courses, and a course contains many
students.

State
› Active – the default state of the relationship.
› Non-Active - only one relationship between two tables can

be active at a time. All other relationships will become
inactive. Relationships can be activated for calculations by
adding the USERELATIONSHIP() expression in DAX.

Direction
› Single – filters applied only flow in the relationship direction.
› Both – filters work are applied in both directions, but can

lead to ambiguous data models and performance
implications.

Types
› Regular Relationships – a relationship where the engine can

validate the one-side of the relationship and both tables are
in the same source group.

› Limited Relationships – relationships with a M:N cardinality
or cross source group. For example a relationship with
an imported table on one side and direct query on the other
side.

› Partitions divide a table into logical parts. Each partition can
then be processed independently of other partitions.
Partitions defined for a model during model authoring are
duplicated in a deployed model. These partitions are part of
the Tabular Object Model (TOM) and can be managed by
Tabular Model Scripting Language. There is no hard limit on
the number of partition objects in a model. On the other hand,
too many small partitions can lead to a very negative impact on
query speed.

› By default, each table in a model has a single partition. For
models with structured data sources, partitions are defined by
using a M expression.

› When partitions are processed, multiple partitions are
evaluated simultaneously to increase performance. However,
there are settings like maxParallelism that limit parallel
processing operations.

› Within Power BI, partitions can also
be produced separately via
External Tools. An example of a tool
that allows this is the Tabular Editor.
It enables you to manage the
Tabular Object Model,
including adding new
components, such as partitions.

Power BI supports three types of data storage Import,
DirectQuery, Dual for data sources. These types have their own
requirements on data sources, so not all sources will support
even most of them.
› Import – Imported data is stored on a disk. To requirement of

querying are all data loaded into the memory of Service. This
in-memory querying supports receiving very fast results. There
is no way to have the model loaded into memory, just partially.
This model is only as current as the last refresh is, so Import
models need to be refreshed, usually on a scheduled basis.
Refresh model drops all refreshing data and needs to load all
data again.

› DirectQuery – DirectQuery only consists only of metadata
defining the model structure. These metadata are used for
building native queries against the data sources. This means
that shown data are actual only as data was in the data source
while the query was sent to execution. Because every visual
load sends these native queries this brings near real-time
experience. M and DAX functions are limited to only using
functions that can be transposed to native queries understood
by the data source.

› Dual – A table configured as Dual storage mode is both Import
and DirectQuery. This setting allows the Power BI Service to
determine the most efficient method to use on a
query-by-query basis.

Connectivity types
› Composite – The composite model is combination of Import

and DirectQuery mode or more DirectQuery sources. Against
alone DirectQuery this supports DAX defined calculated
tables. These models strive to deliver the best of Import and
DirectQuery modes.

› Live Connection – Is the connectivity type used between report
and Power BI dataset, or analysis services dataset, where the
report sends a query intended to render a visual, to the dataset
which will process the query and return the relevant data.
(RLS & OLS).

› Measures are aggregators of values where the type of
aggregation is defined by DAX expression, and evaluation
contexts define data. The measure must be defined in a table,
so, you can't create a measure without a table. Measures can
reference each other inside expression but only if the result is
not a recursive reference.

› Contexts are provided into evaluation by visual element and by
DAX query. We have two types, "Filter context" & "Row
context," of evaluation contexts, and these contexts can be
combined in many ways.

› The resulting aggregation corresponds to a combination of all
current input contexts. It follows that if the context is given,
for example, using a slicer visual, which filters the input table
of the calculation, and the selected value is changed, then the
whole measure is recalculated, and a new result is obtained.

› Measures are calculated on the fly at visual render time and is
processed in CPU.

› A calculated column is a new column added to the model
using DAX respectively by its formulas. This new column
behaves like any other column in the table to which we add it
and can be used to define relationships.

› When creating a column, the context of the calculation is
directly dependent on the row for which the result is currently
executed. So, the references of the other columns naturally
return only the value that comes from that row.
(Unless the context is further modified.)

› The column is calculated and stored during the processing of
the model database. This causes an increase of the time
required to process the model but does not affect the
resulting query time. The result of the calculated column is
with model stored in Memory, so it can waste very needed
space for other computes. This fact is actual only in Import
mode. In DirectQuery mode, these columns are computed as
the Tabular engine queries the data source. However, this can
have a very negative impact on performance.

› DAX (Data Analysis Expressions) is a library of functions and
operators combined to create formulas and expressions. It is
the best language to answer analytical questions which their
responses will be different based on the selection criteria in
the report.

› M is the scripting language behind the scene for Power Query.
This language is great for capturing, preparing, transforming,
and combining data before loading it into your model.

“Data should be transformed as far upstream as possible, and as
far downstream as necessary.

› In this context “upstream” means closer to where the data is originally
produced, and “downstream” means closer to where the data is consumed.

› Power Query is farther upstream. Performing data transformation in Power
Query ensures that the data is loaded into the data model in the shape it
needs to be in when your dataset is refreshed. Your report logic will be
simplified and thus easier to maintain, and will likely perform better because
the Vertipaq engine will need to do less work as users interact with the
report.

› If you need data transformation logic that depends on the context of the
current user interacting with the report – things like slicers and cross-
filtering? This is the perfect job for a DAX measure, because Power Query
doesn’t have access to the report context. Implementing this logic farther
downstream in DAX makes sense because it’s necessary.” Matthew Roche

› A composite model is a data model that combines two
different storage modes in a single data model.

› Use cases for composite models are for example dealing
with large data volumes and near real-time data
which cannot be solved in import storage mode.

› Storage modes supported in composite models are Import,
Direct Query, Dual and Hybrid. Each composite model
contains a combination of two or more storage modes.

› To improve performance, consider adding aggregations (user
defined or automated) for direct query fact tables and benefit
from imported data on aggregated level.

› As com posite models combines various storage modes in a
single model, be aware of the potential limited relationsihps
that could be introduced in your model. Consider Dual
storage model to avoid limited relationships.

› Composite models can be connecting to each type of data
source, but also to existing Power BI datasets or Azure
Analysis Services models.

› Dataflow is intended for (self service) data preparation inside
Power BI Service. We can call it with a different name,
“Power Query Online" so it's also using also language M. All
transformed data are stored inside CDM compliant folders
inside Azure Data Lake Gen2 (ADLG2).

› In which ADLG2 will data be stored can be set up on
workspace level or tenant level. Without any Data Lake will
data be stored in the native one.

› Every dataflow is a separated artifact that can be reused in
many datasets without re-calling data sources.

› Inside one dataflow can be one or more queries. There are
three types of result queries that can be used.
› Standard – Data are fetched directly from a data source or

with data from non-stored entities within the same dataflow.
› Computed* – This is a type of query, which is created

thanks to combinations of multiple loaded queries.
› Linked* – Enables you to reference an existing table, defined

in another dataflow, in a read-only fashion.

*available only with Premium per Capacity / User

› A Dataset in the Power BI service is a source for reporting and
visualization. There are various types of datasets;
- Created from Power BI desktop and published to the service.
- Excel workbook uploaded to the Power BI Service
- Push dataset, which can only be created in the Power BI

Service and is fed via the Power BI REST API.
- Streaming datasets, for real time purposes and populated

with data via an Azure Eventhub, PubNub, or REST API.
› Datasets can also live outside the Power BI Service, such as an

(Azure) Analysis Services model. In case of external models,
reports will have a live connection to the dataset.

› Power BI Desktop created models are saved in the *.pbix file,
and after publishing the file is split in a dataset and a report.

› Datasets created in Power BI are Tabular models, while
Analysis Services could also create multi-dimensional models.
Power BI works best with Tabular models.

› Datasets in the Power BI Service can be shared with others by
granting build permissions, so others can build new reports
on top of the same dataset. Others can find datasets by using
the datasets hub in the Power BI Service to explore and
directly create reports from scratch on top of the dataset.

https://ssbipolar.com/2021/05/31/roches-maxim/

